首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191609篇
  免费   16671篇
  国内免费   8859篇
电工技术   8412篇
技术理论   17篇
综合类   17564篇
化学工业   31961篇
金属工艺   10610篇
机械仪表   5786篇
建筑科学   30349篇
矿业工程   10289篇
能源动力   8265篇
轻工业   12845篇
水利工程   22400篇
石油天然气   12171篇
武器工业   1138篇
无线电   8518篇
一般工业技术   14613篇
冶金工业   11128篇
原子能技术   2432篇
自动化技术   8641篇
  2024年   338篇
  2023年   2271篇
  2022年   4435篇
  2021年   5549篇
  2020年   5671篇
  2019年   4732篇
  2018年   4421篇
  2017年   5576篇
  2016年   6021篇
  2015年   6384篇
  2014年   11562篇
  2013年   11128篇
  2012年   13847篇
  2011年   14618篇
  2010年   11319篇
  2009年   11795篇
  2008年   10268篇
  2007年   13229篇
  2006年   12468篇
  2005年   10727篇
  2004年   8862篇
  2003年   7914篇
  2002年   6796篇
  2001年   5365篇
  2000年   4441篇
  1999年   3384篇
  1998年   2552篇
  1997年   2132篇
  1996年   1717篇
  1995年   1575篇
  1994年   1214篇
  1993年   934篇
  1992年   777篇
  1991年   608篇
  1990年   468篇
  1989年   459篇
  1988年   304篇
  1987年   255篇
  1986年   183篇
  1985年   168篇
  1984年   168篇
  1983年   110篇
  1982年   66篇
  1981年   30篇
  1980年   42篇
  1979年   48篇
  1977年   17篇
  1966年   18篇
  1959年   22篇
  1951年   17篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
101.
Despite being difficult to identify, extremely dilute oxygen vacancies have been widely reported to play an important role in enhancing magnetism in ZnFe2O4. The mechanisms underlying this enhanced magnetism have not been well understood for a long time and remain controversial because the formation of oxygen vacancy-rich ZnFe2O4 can be accompanied by changes in the chemical/physical characteristics, especially the composition, particle size, surface morphology and cation distribution, which can significantly affect the magnetization. An open and important question is whether and to what extent the enhanced magnetization can be attributed only to oxygen vacancies. In this study, the relationship between the magnetization and oxygen vacancies in ZnFe2O4 was definitively determined by using a carefully designed “shake-and-heat” treatment to prepare vacancy-rich samples while keeping the other crystal/surface parameters constant. Compared to the nearly vacancy-free paramagnetism samples, the vacancy-rich samples exhibited a higher magnetization of approximately 5 emu/g at both 300 K and 2 K. The Fe3+-O2--Fe3+ superexchange paths broken by oxygen vacancies then resulting in the Fe3+-Fe3+ ferromagnetism configuration. Meanwhile, the oxygen vacancy is highly diluted then the ferromagnetism configuration is confined in a single super-cell, favoring a short-range magnetic ordering at room temperature. The concentration of oxygen vacancies was calculated to be 0.68% by magnetization measurement. Our results may shed a light on how oxygen vacancies affect magnetism.  相似文献   
102.
The materials processing history has a great influence on their properties and finally determines their application effect. In this paper, the ferroelectric, polarization-switching current, and strain properties of Mn-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 ceramics were studied in fresh state, aged state, and poled state, respectively. Compared with the symmetric polarization-electric-field (P-E) hysteresis loops, current-density-electric-field (J-E) curves, and bipolar electric-field-induced strain (S-E) curves in fresh state samples, asymmetric P-E loops, J-E curves, and bipolar S-E curves were obtained in poled state samples. Well-aged-state samples exhibit double hysteresis P-E loop, four peaks J-E curves, and symmetric S-E curves without negative strain. The symmetry-conforming short-range order (SC-SRO) principle of point defects and internal electric field Ei is employed to clarify the different phenomenon of three states. Results indicated that randomly oriented defect polarization PD in aged samples can reverse the spontaneous polarization PS back and result in the double hysteresis P-E loop and four peaks J-E curves. The oriented PD and resulting Ei in poled-state samples will lead to the asymmetric loops and strain memory effect.  相似文献   
103.
Reducing micropollutant pollution of water bodies is an important objective of water management and an integral part of environmental policy. Ceramic nanofiltration membranes were developed as multichannel membranes of increased membrane area and rotating disk filters. The membranes developed show retention of over 80 % for PEG 400. The membranes are currently being tested for the separation of micropollutants from wastewater contaminated with pharmaceuticals. With the help of a downstream oxidative process, the trace substances remaining in the permeate are degraded.  相似文献   
104.
The realization of seawater electrolysis requires high-performing anode materials that should possess good catalytic activity, stability, and specificity for the oxygen evolution reaction (OER) as well as high resistance toward chloride corrosion. Herein, the design of a multilayered oxygen-evolution electrode is reported to meet the multiple needs of anode material for saline water splitting. The multilayered electrode is synthesized through direct thermal boronization of commercially available NiFe alloy plate with boron powder, followed by electrochemical oxidation. And this electrode is composed of the surface oxidized NiFeBx alloy layer, the NiFeBx alloy interlayer, and the NiFe alloy substrate. The boron species are present in the form of metaborate in the outermost oxidized NiFeBx layer, and their existence is conductive to the generation and stabilization of the catalytic active phase γ-(Ni,Fe)OOH. The introduction of NiFeBx interlayer effectively prevents the excessive oxidative corrosion of the anode material in the electrolyte containing chloride ions.  相似文献   
105.
《Ceramics International》2021,47(24):34869-34880
This work complements an initial study regarding the mechanical behavior of MgO–C bricks at 1000 °C. In this case, two bricks bonded with phenolic resin, one of them containing aluminum, were treated at 600 °C and mechanically tested at RT and 600 °C. The thermal treatments attempt to simulate the in-service steelmaking ladle preheating process. At low temperatures, the binder pyrolysis is one of the main transformations and the Al melting neither its chemical reactions occur on a large scale yet. To evaluate the effects as the pyrolysis progresses, the soaking time at 600 °C was varied from 1 to 3 h. Although without significant chemical activity, the presence of Al affected the mechanical behavior of the tested bricks. The consolidation of the C–C network coming from the binder pyrolysis was identified as the main factor responsible for counterbalancing the material's degradation by microcracking. The heating combined with the low compressive pre-load applied on the tested specimens appears to close the microcracks and pores.  相似文献   
106.
ABSTRACT

Energetic materials are often disposed by open-burning or open-detonation as it is a cost-effective and efficient means of destroying explosive material, and often minimizes the need to transport hazardous explosives to treatment facilities. This practice is often scrutinized for the negative environmental impact of the odorous and unsightly toxic gaseous emissions as well as the resulting deposition residues, which often contain unburned energetic materials. With the increasing use of Insensitive High Explosive compositions in munitions, it is essential that the potential environmental impact of their disposal is assessed before their extensive use to prevent the kind of contamination incidents experienced with legacy explosives. Therefore, the aim of this work was to develop a controlled laboratory experiment to identify the gaseous emissions and the energetic material residues that are generated through the combustion of the IHE components 3-nitro-1,2,4-triazol-5-one (NTO), 2,4-dinitroanisole (DNAN), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). A sealed vial containing small (mg) quantities of energetic material was heated until the energetic material combusted. Gas chromatography/mass spectrometry (GCMS) was used to calculate the oxygen consumption and to identify the gases that were generated. The solid residues were analyzed by high-performance liquid chromatography (HPLC) to quantify unburned energetic material. Results showed that DNAN was the most resistant to burning, thus leaving significant quantities of unreacted starting material in the vial. An interesting observation for the IHE formulation was that DNAN also inhibited the combustion of NTO and RDX. The gases emitted during the open burning of IHE components and mixtures included CO, CO2, and N2O as expected, but the proportions differed when the components and mixture were compared, reflecting the influence of DNAN on the burning behavior. From our data, we concluded that open-burning DNAN-based formulations is an environmentally unfavorable waste-management practice for the disposal of IHEs mainly due to generation of solid residues as well as unburnt DNAN.  相似文献   
107.
108.
不宁腿综合征(restless legs syndrome, RLS)是临床常见的运动感觉性神经系统疾病。主要表现为强烈、迫切想要移动肢体冲动/欲望,常常伴随着肢体深处不舒服或难以描述的感觉,夜间睡眠或安静时出现或加重,具有昼夜节律性,按摩或活动后缓解,安静时加重。本文将从RLS的发病机制、临床表现、诊断标准、鉴别诊断和治疗等方面进行系统综述。  相似文献   
109.
Inorganic nanoparticles (NPs) offer significant advantages to the biomedical field owing to their large surface area, controllable structures, diverse surface chemistry, and unique optical and physical properties. Researchers worldwide have shown that inorganic NPs and the released metal ions can act as therapeutic agents in targeted tissues or to cure various diseases without acute toxicity. In this progress report, the recent developments in inorganic NPs with different compositions directly used as therapeutics are discussed. First, the recent convergence of nanotechnology and biotechnology in biomedical applications as well as the unique functions, features, and advantages of inorganic NPs in biomedical applications are summarized. Thereafter, the biological effects of inorganic compositions in NPs which include balancing the intracellular redox environment, regulating the specific cellular signaling and cellular behaviors, and apoptosis are explained. In addition, the emerging therapeutic applications of inorganic NPs in various diseases are exemplified. Finally, the perspectives and challenges for overcoming the weaknesses of inorganic NPs as therapeutics are discussed. By carefully considering and investigating the biological effects of inorganic NPs and metal ions released from NPs, more promising inorganic NPs based therapeutic agents can be developed.  相似文献   
110.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号